Design and Verify Embedded Signal Processing Systems Using MATLAB and Simulink

Giorgia Zucchelli, Application Engineer, MathWorks
17 December 2010, Technical University Eindhoven
Introduction to Model Based Design

- Methodology to design complex systems
 - Using models and simulation
 - Using tools that help automation
- Find errors early
- Reduce costly prototypes
- Increase productivity
From Idea to Implementation
Not only coding, but also verifying, debugging, documenting, reusing

- Design Flows
- Design Methodologies
- EDA Tools
- Languages
- Simulators
- Models
- Prototypes
- …
Algorithm Design

Advantages:
- Executable specs
- Multi-domain: one model
- Many trusted functions

- Share the same specs
- Reuse the same model
- Fast design iterations
Algorithm Refinement

Advantages:
- Refined behavioral models
- Bit-true simulation
- Multi-domain physics
- Anticipate implementation
- Early verification
Algorithm Implementation

Advantages:
- Automatic code generation
- C / C++
- Synthesizable HDL

- Rapid prototyping
- Less debugging, better design
Algorithm Verification

- Co-simulation with EDA tools
- Integration with IDEs

Advantages:
- Verify implementation at system-level
- Design reuse

RESEARCH → REQUIREMENTS → DESIGN

- Algorithms
 - Digital
 - Analog/RF
 - Fixed-Point
 - Physical Models

IMPLEMENTATION → TEST & VERIFICATION

- C, C++
- VHDL, Verilog
- Spectre
- MCU, DSP, FPGA, ASIC, Analog Hardware

INTEGRATION
Testing

- “Hardware in the loop” verification
- Test at system-level

Advantages:
- Unambiguous, fast verification
- One testbench fits all
Demo: Parametric Audio Equalizer
Digital filters used to adjust the frequency content of an audio signal

- Parametric response that can be run-time controlled
- Three band equalizer
 - Low Band: 60 to 1500 Hz
 - Mid Range: 1200 to 4800 Hz
 - High Range: 4800 to 12 kHz
 - Amplitude range: -8 to +8 dB
- Target processor: TI C6437 DSP
Algorithm Design: PC Based Prototyping

Data source → Simulink Embedded MATLAB → Data analysis

Simulink

Algorithm Design: PC Based Prototyping

Data source → Simulink Embedded MATLAB → Data analysis

Simulink
Algorithm Design: PC Based Prototyping

- Implement the executable specifications
- Separate the model from the testbench
Algorithm Refinement: Fixed-Point

Data source

Fixed-Point Simulink Embedded MATLAB

Data analysis

Simulink
Algorithm Refinement: Fixed-Point

- Reuse the same testbench
Software-in-the-Loop (SIL) Verification

Data source

Simulink
Embedded MATLAB

Legacy C code

Simulink

Data analysis

Time

Source

Simulink
Software-in-the-Loop (SIL) Verification

Data source → Simulink Embedded MATLAB → Legacy C code → Data analysis

- Reuse the same testbench
Processor-in-the-Loop (PIL) Verification

Data source → Simulink Embedded MATLAB

Simulink

Embedded IDE Link

IDE

Texas Instruments™ Code Composer Studio™
Analog Devices® VisualDSP++®

Green Hills® MULTI®
Altium® TASKING®
Eclipse
Processor-in-the-Loop (PIL) Verification

Data analysis

IDE

Data source

Simulink
Embedded MATLAB

Simulink

Embedded IDE Link

IDE

- Texas Instruments™ Code Composer Studio™
- Analog Devices® VisualDSP++®
- Green Hills® MULTI®
- Altium® TASKING®
- Eclipse

. Reuse the same testbench
On-Target Rapid Prototyping

Simulink Embedded MATLAB

Simulink

Embedded IDE Link

ADC → Embedded C → DAC

Texas Instruments™ Code Composer Studio™
Analog Devices® VisualDSP++®
Green Hills® MULTI®
Altium® TASKING®
Eclipse
On-Target Rapid Prototyping

- Real time behavior
- Profiling

Simulink
Embedded MATLAB

ADC → Embedded C → DAC

Texas Instruments™ Code Composer Studio™
Analog Devices® VisualDSP++®

Green Hills® MULTI®
Altium® TASKING®

Eclipse

Data analysis
Quickly Iterate between Idea and Prototype

✓ First prototype is functionally correct with automatic C code generation

✓ Spend your time in optimizing rather than debugging the code

✓ Find errors reusing the same testbench at each design step